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This paper presents a method for the detection of fouling in a cross-flow heat exchanger. A numerical
model is used to generate data when the heat exchanger is clean and corresponding data when fouling
occurs. In a first step, the model is used to generate a long time series by simulating a clean heat
exchanger. This allows the determination of a neural network model of the heat exchanger. Then,
hundred sets of data are generated by simulating a fouled heat exchanger and it is checked that the

simple Cusum test can be used to detect fouling without any false alarm, whatever the reference time

series is.
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1. Introduction

The range of industrial fields concerned by fouling is quite broad.
It goes from food industry (e.g. [1]), water treatment and use
(e.g.[2]), to oil refineries (e.g. [3]) just to name a few. The studies can
be divided in three complementary domains: the principles of
fouling (chemistry and flow conditions, e.g. [4]), the mitigation of
fouling (design phase, water treatment, surface treatment, ...,
e.g. [5]), and monitoring fouling (model based techniques, sensors,
..., €.2. [6]). The present study belongs to the model based tech-
niques. As neural networks are now popular in thermal engineering
(e.g.[7,8]), they are used here to model a cross-flow heat exchanger.
Then a statistical test is used to detect fouling before the sizing
fouling factor is reached.

The first part of the paper is dedicated to the description of
a mathematical model used to generate data. The model is based on
the finite volume method and can accurately simulate transient
behaviour in cross-flow heat exchangers, which is important with
regard to varying inflow conditions and internal conditions, see
[9,10]. By using this model it is possible to compare the outlet
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temperatures of a clean heat exchanger and a heat exchanger
where fouling progressively occurs. The second part of the paper
presents the identification process using neural networks. The last
section deals with the detection of fouling using a statistical test on
estimated values obtained by the neural network.

2. Description of the model used to generate data

The fact that steady state conditions are seldom encountered in
practice leads to the use of an accurate dynamic model of a heat
exchanger, applicable for general cross-flow conditions. The model
is based on a mathematical representation of the flow, where
temperature is defined as a position dependent field for both the
cold and hot fluid in the exchanger. General conditions in the heat
exchanger can therefore be defined as two planar functions, T(x, y)
for the cold side and Tp(x, y) for the hot side. Fig. 1 shows a graphical
layout of the model with the relevant dimensions, in the x—y plane.

In conjunction with Fig. 1, consider a plate heat exchanger with
cross-flow along x and y directions. The width of the exchanger in
the x direction is W and the height is H. Furthermore, the thickness
of the hot and cold passages are dy and d,, respectively. It is
assumed that the cold stream travels only in the x direction and the
hot stream in the y direction, so no internal mixing takes place
inside the exchanger. It is also assumed that there is no diffusion (or
thermal conduction) along the fluid streams and thus only pure
convection is considered.
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Nomenclature

Cus Cusum (cumulative sum)

c specific heat

d water passage thickness

E[v] expectation of variable v

g coefficient in the cumulative sum test
H heat exchanger height

h coefficient in the cumulative sum test
k sample number

m mass flow rate

Rf fouling factor

T temperature

t time

U overall heat transfer coefficient

w heat exchanger width

v dummy variable
X position in direction of heat exchanger width
y position in direction of heat exchanger height

Greek symbols

p fluid density

a standard deviation
Subscripts

c cold

clean when there is no fouling

fouling when fouling occurs

h hot

o at the outlet of the heat exchanger
ref for the reference time series

The energy balance for this system is described by two coupled
partial differential equations (PDE) where the field variables are
the temperatures T, and Ty for the cold and hot side, respectively.
The equations are

0T,  mcce T,
pcccdca—tc+ 1516 a_xc = U(T, - To)
oT, mycy, 0T,
pChdp 0+ B Z = YT — Ty)

ot W oy

In this formulation p and ¢ could be dependent on the fluid
temperature and U can also be dependent on both temperatures of
the flow as well as on position in the x—y plane. Also, the cold
stream mass flow can depend on y and the hot stream can depend
on x, which represents a partially clogged heat exchanger with flow
restrictions. It is also assumed that parameters such as heat transfer
coefficient U, inflow temperatures and mass flow can be time
dependent. Note that the overall heat transfer coefficient incorpo-
rates convection on both cold and hot sides, as well as conduction
through the walls.

In order to solve the PDEs describing the thermal conditions,
a numerical scheme must be used. The chosen scheme is a two
dimensional finite volume model with two coupled fields, repre-
senting the flow in the cold and hot parts of the exchanger.

Fig. 1. Graphical representation of the mathematical model describing temperature
fields in a cross-flow heat exchanger.

As mentioned before, it is assumed that no mixing takes place, but
at the outlet of both fluids, they are of course mixed and an average
temperature is calculated there.

The current mathematical problem only includes convection
with a source term, but pure convection problems are notorious for
their instability in terms of nonphysical overshoots in the solution
as well as pure accuracy if low order discretization is used. A well
known numerical scheme for convection is the QUICK scheme,
see [11], which was used in this case. It is very accurate, but small
overshoots can be experienced in solution, especially if the chosen
time step is not sufficiently small or if temperature changes are very
rapid.

3. Validation of the model

Before using the model to generate transient data, it is necessary
to know if steady states are accurately determined. Fig. 2 shows the
comparison of the effectiveness obtained by the model and the
effectiveness computed using an analytical equation (see e.g. [12]).
Here, the model uses 20 finite volume cells in each direction,
resulting in a total of 800 cells.

The average relative difference between the two values over the
whole dataset is less than 1.1%. So, it can be concluded that steady
states are correctly modelled.
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Fig. 2. Comparison of the analytical effectiveness and the effectiveness computed by
the model.
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Fig. 3. Determination of the upper value of the time step for the model.

Concerning transient states, the two main parameters having an
influence on the accuracy are the number of cells and the time step.
Plotting the outlet temperatures for various values of the time step
does not lead to a clear view. So, it has been decided to plot (Fig. 3)
the evolution of correlation coefficient between outlet tempera-
tures obtained for one particular time step and the outlet values
obtained for the smallest time step taken into account (0.001 s), and
for the maximum number of cells taken into account (64 in each
direction for each fluid, 8192 in total).

From these results, it has been decided to take a time step of
0.005 s for the rest of the study. The influence of the number of cells
is presented in a similar way. Fig. 4 shows the correlation coeffi-
cients for the selected time step.

From these results it has been decided to use 20 cells in each
direction for the rest of the study. Fig. 5 shows the temperature
difference between outlet temperatures obtained using 20 cells and
64 cells for the selected time step.

4. The neural network model of the heat exchanger

The identification process applied to thermal problems using
neural networks has been described in previous papers (see e.g.
[13—15]) and will not be detailed here (see e.g. [16—18] for general
information on neural networks for identification and modelling).
It could have been possible to model both sides of the heat
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Fig. 4. Influence of the number of cells in each direction on the accuracy of the model.
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Fig. 5. Temperature difference between the temperatures obtained using the selected
number of cells and the temperatures obtained using a reference number of cells.

exchanger, as done in [8], but it has been decided to try to detect
fouling using just one side (the cold side). Hence, only one time
series will be studied. Although the time step for the generation of
the data is 0.005 s, it has been chosen to take one sample out of ten
for the identification. So, the whole database is composed of a long
clean period (10 000 samples). Learning is carried out during the
first 8000 samples. After the usual procedure, the final architecture
is obtained and is as follows:

- the hidden layer is composed of 5 neurons; 4 are nonlinear; 1 is
linear
- the output layer is composed of a linear neuron.

In comparison, the corresponding numbers for a simple tube-in-
tube heat exchanger are 2 nonlinear and 1 linear hidden neurons,
the output neuron being linear, see [8].

The inputs are:

- 4 past values of the estimated outlet temperature of the
cold fluid

- 4 past values of the inlet temperature of the cold fluid

- 4 past values of the inlet temperature of the hot fluid

- 4 past values of the mass flow rate of the cold fluid

- 4 past values of the mass flow rate of the hot fluid.
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Fig. 6. Evolution of the fouling factor versus the sample number.
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Generate 100 sets of inputs

v

Compute 100 sets of output for a clean heat exchanger

And

Compute 100 sets of output when fouling occurs

!

‘ Take the first set of inputs ‘

!

Take the corresponding set of output for a clean heat
exchanger as the reference time series

!
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Fig. 7. Procedure to evaluate the detection technique.

5. Fouling detection

To simulate fouling, the overall convection heat transfer coeffi-
cient has been progressively decreased; the resulting fouling factor
is shown in Fig. 6. The upper value of the fouling factor is then about
4.4 x 10~* m? K/W. This falls within usual values taken into account
for water, see e.g. [19,20]. The aim of the technique is to detect
fouling before a limit value is reached. This value, the sizing value, is
fixed to 3 x 10~% m? K/W.

To test the efficiency of the detection technique, the following
procedure has been used (Fig. 7). The great number of datasets and
cross-tests will give results that are very strong statistically, which
is necessary in order to make sure that the method is not prone to
false alarms.
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Fig. 8. Effect of fouling on the mean temperature difference.
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Fig. 9. Visualization of the distribution of the fouling factor at detection.

The Cusum test is a comparison between the moving average
value of a time series and the average value of a reference time
series. It is well documented in [21]. Due to the fact that fouling
leads to the decrease of the estimated parameters, a one-sided test
is sufficient (the second side — min operator— of the test would be
necessary to detect an increase of the estimated parameters). This
test is carried out in two steps:

1) compute the cumulative sum: Cus(k) = max(0, E[vef] — E[v]
— g0 +Cus(k—1))
2) check if Cus(k) > h ¢ ; if so, then the drift is detected.

If g and/or h are too low, false alarms are encountered. If they are
too high, the drift is not detected. It has been found that g = 0.25
and h = 5 are a good compromise. It leads to no false alarm and
quite efficient fouling detection as shown hereafter.

To estimate if a simple temperature measurement could have
been sufficient, the following average temperature difference has
been computed over the hundred experiments:

E[(Thso - Tcﬂo)fouling_ (Tho — TC‘O)clean}

Fig. 8 shows what would be this temperature difference at the
minimum, average, and maximum detection sample number.

The light grey zone represents the temperature difference for
the 100 experiments. It can be concluded that a simple test on the
temperature difference would not have been as sensitive as the
technique presented here.

To see if the goal of the technique is achieved, it is necessary to
show that all detections occur before the upper limit of the fouling
factor is reached. This is done in Fig. 9.

It can be concluded that the technique is quite sensitive, and
that it could easily be implemented online as the computational
time is quite low.

6. Conclusion

It has been shown that a neural network model of a cross-flow
heat exchanger can be used to develop a fouling detection tech-
nique. It has been shown that the number of nonlinear neurons of
the hidden layer of the neural network has to be increased
compared to a simple tube-in-tube counter-flow heat exchanger.

It has also been shown that, once the neural network is well
trained, there is no false alarm, and that fouling is detected quite
early when it occurs. This has been carried out on a quite large
database (100 experiments). Hence, although it is necessary to train
the neural network offline, this technique could be implemented
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online in supervision systems so that the maintenance can be
predictive instead of systematic, leading to a lower exploitation cost.

Future works will address fouling detection in actual heat
exchangers. For that, a test rig is under construction in the LME, and
measurements will be recorded in geothermal Icelandic power
plants. Also, for small timescales the effect of the separating metal
in the heat exchanger will affect the temperatures and therefore the
simulation model will be revised to include the dynamic effects of
the metal.
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